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1. Page 191, number 5

Consider the set S of students of who entered the store. We know |S| =
15. Let P ⊆ S consist of the students of bought popsicles, G ⊆ S be
the students who bought gum, and C ⊆ S be the students who bought
candy bars. We know P ∪G ∪ C ⊆ S, so then |P ∪G ∪ C| ≤ 15.

However, from inclusion-exclusion principle,

|P ∪G ∪ C| = |P |+ |G|+ |C|− |G∩P |− |P ∩C|− |C ∩G|+ |P ∩G∩C|

From other information in the problem this means that,

|P ∪G ∪ C| = 16 + |P ∩G ∩ C|

So then 16+ |P ∩G∩C| ≤ 15. This is obviously not true, so there must
be a bookkeeping problem, or the clerk made an error and mischarged
somebody.

2. Page 192, number 16

Let N be the set of integers between 1 and 106. Let S ⊆ N be the set
of perfect squares inside N and C ⊆ N be the set of perfect cubes inside
N.

We know that (102)3 = 106, so 102 is the last integer whose cube is inside
106. Alternatively,

3
√

106 = 102. Thus there are 102 = 100 perfect cubes
inside N and |C| = 100.

Similarly, we know that (103)2 = 106, so 103 is the last integer whose
square is inside N so |S| = 1000.
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Finally, from the hint, we know that any number which is both a perfect
square and a perfect cube is also a perfect sixth power (i.e. their sixth
root is an integer). This is precisely the set S ∩ C. We know 10 is the
last number whose sixth power is inside 106. So |S ∩ C| = 10.

By the inclusion-exclusion principle, |S ∪ C| = |S| + |C| − |S ∩ C|, so
|S∪C| = 1090. This is the number of integers which are perfect squares
or cubes. We want the complement of this set.

|(S ∪ C)c| = |N | − |S ∪ C| = 106 − 1090

3. Page 198, number 16

Note: I interpreted this problem differently from the book’s answer in
part (a). I ignored the order in which your cards are dealt to you. I will
provide solutions for both interpretations and will not take off points
for either interpretation, provided you did not switch between the two
without explanation.

(b) i. Counting order. The pairs can come in three different orders:
AABB, ABBA or ABAB. For each order, there are 52 choices
for the first card, 3 for the second of that pair, 48 first care in
the second pair, and 3 for the second card of the second pair.
So there are 3 · (52 · 3 · 48 · 3) = 67392 possibilities.

ii. Ignoring order. Ignoring suits, we have 13 choices for the value
of the first pair and 12 for the value of the second pair. We
must divide by 2 to account for swaps. Looking at suits, for
each pair, there are 4 possibilities for the first card and 3 for
the second card, divided by 2 to account for swaps. So there
are 13·12

2
· 4·3

2
· 4·3

2
= 2808 possibilities.

(c) i. Counting order. From the (a) we know there are 312 ways for
four of a kind. This set is disjoint from 2 pair (their intersection
is empty) so we can just add the possibilities of both: 67392 +
312 = 67704.

ii. Ignoring order. Ignoring card order there are logically only 13
ways to get four of a kind. Again we can just add both sets:
2808 + 13 = 2821.

(d) i. Counting order. The cards can be dealt in four different ways,
each with the same number of possibilities: AAAB, AABA,
ABAA, BAAA. For each organization of cards, there are 52

2



possibilities for the first card in the triple, 3 for the second
in the triple and 2 for the third in the triple. There are 48
cards for the kicker. Since there are four organizations the
total possibilities are 4 · 52 · 3 · 2 · 48 = 59904.

ii. Ignoring order. There are 13 possibilities for the suit of the
triple and 4 choices for the suit of the card which is not dealt
to you. There are 48 remaining cards for the kicker.

13 · 4 · 48 = 2496

(e) The set of hands which have at least one pair can be partitioned
into four-of-a-kind hands, three-of-a-kind hands, 2-pair hands, and
1-pair hands. Each type of hand does not overlap with any other
set. So we can find the size of their union by adding up all their
respective sizes. We’ve already found the size of everything but
one-pair hands.

i. Counting order. A one pair hand can be dealt in six ways where
A’s are pairing cards and B’s are non-pairing cards: AABB,
ABAB, ABBA, BABA, BAAB and BBAA. For each type of
order, there are 52 possibilities for the first card in the pair,
3 possibilities for the second card in the pair. For the non
pairing cards, there are 48 possibilities for the first non-pairing
card. The second non-pairing card can’t pair with the first
non-pairing card, or with the pair, so there are 44 possibilities.
So the total possibilities for one-pair hands is

6 · 52 · 3 · 48 · 44 = 1976832

To find the total possibilities for hands with at least one pair,
we add this to the possibilities of the other hands:

1976832 + 59904 + 67392 + 312 = 2104440

Note that there are about 6.5 million different hands counting
order, so this is about 1 in 3 probability.

ii. Ignoring order. There are 13 values for the pair and 4·3
2

choices
for the suits of the cards. There are 48 possibilities for the
next card and 44 possibilities for the last card since it can’t
pair with the previous card or the pair. We must also divide
by 2 to account for swapping of the two non-pairing cards. So
the total combinations for one-pair hands are

13 · 4 · 3
2

· 48 · 44

2
= 82368
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To find the total possibilities for hands with at least one pair,
we add this to the possibilities of the other hands:

82368 + 2496 + 2808 + 13 = 87685

There are 52·51·50·49
4!

≈ 270000 hands ignoring order, which is
about a 1 in 3 probability of getting at least a pair, as before.

4. Page 199, number 24

For any s, t is completely determined. Because gcd(s, t) = 1, s and t
cannot share any prime factors. So s is a product of all the factors of
some number of primes from n, and t = n/s. For each prime, s can
contain its all factors in n or not. So there are 2r choices for s. However,
we must divide by two, because these are unordered pairs and we must
avoid duplicates. So there are 2r−1 unordered pairs of {s, t}.

5. Page 134, number 20

Let F := Fun(A, B), the set of functions from A to B.

(a) Let f ∈ F . For each a ∈ A, f(a) must go to some element in
B. Thus for each element a in A, there are |B| choices where f(a)
can go. But a function in F is precisely determined by where the
elements of A go. So

|F | =
|A| times︷ ︸︸ ︷

|B||B| · · · |B| = |B||A| = 3n

(b) A function in F which is not onto must not go to either 1, 2 or 3
– otherwise it would be onto. Let F#1 ⊆ F be the set of functions
which does not go to 1. Similarly define F#2 and F#3. If a function
is in one of these three sets, then it is certainly not onto. So a
function f is not onto if and only if f ∈ F#1 ∪ F#2 ∪ F#3.

If a function f does not go to 1, then for each a ∈ A, f(a) is 2 or
3. Thus there are 2n possibilities for f. So |F#1| = 2n. Similarly,
|F#2| = |F#3| = 2n.

Now lets look at intersections of these sets. Suppose f ∈ F#1∩F#2.
Then f does not go to 1 or 2. So then ∀a ∈ A, f(a) = 3. Thus there
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is only one element in F#1 ∩ F#2.
Similarly, |F#1 ∩ F#3| = |F#2 ∩ F#3| = 1.

Finally, let’s look at the intersection of all three sets. Suppose
f ∈ F#1 ∩ F#2 ∩ F#3. The f does not go to 1, 2 or 3. But this is
impossible: f(a) must go somewhere. So F#1 ∩ F#2 ∩ F#3 = ∅.

By the inclusion-exclusion principle,

|F#1 ∪ F#2 ∪ F#3| = |F#1|+ |F#2|+ |F#3| − |F#1 ∩ F#2| − |F#1 ∩ F#3|
− |F#2 ∩ F#3|+ |F#1 ∩ F#2 ∩ F#3|

= 2n + 2n + 2n − 1− 1− 1 + 0

= 3 · 2n − 3

(c) The set of functions which are onto is the complement to the set of
functions which are not onto.

|(|F#1 ∪ F#2 ∪ F#3)
c| = |F | − |F#1 ∪ F#2 ∪ F#3|

= 3n − 3 · 2n + 3

= 3 · (3n−1 − 2n + 1)
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